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Abstract—Keystroke dynamics is one of the biometrics tech-

niques that can be used for the verification of a human being.

This work briefly introduces the history of biometrics and the

state of the art in keystroke dynamics. Moreover, it presents

an algorithm for human verification based on these data. In

order to achieve that, authors’ training and test sets were

prepared and a reference dataset was used. The described

algorithm is a classifier based on recurrent neural networks

(LSTM and GRU). High accuracy without false positive errors

as well as high scalability in terms of user count were chosen as

goals. Some attempts were made to mitigate natural problems

of the algorithm (e.g. generating artificial data). Experiments

were performed with different network architectures. Authors

assumed that keystroke dynamics data have sequence nature,

which influenced their choice of classifier. They have achieved

satisfying results, especially when it comes to false positive free

setting.

Keywords—biometrics, GRU networks, keystroke dynamics,

LSTM networks, recurrent neural networks, user verification.

1. Introduction

The problem of verification is most often solved by assign-

ing some kind of a password, which should only be known

to a given user and consists of finite sequence of characters.

When the user provides this password, a party responsible

for confirmation of an identity may tell whether the user is

whom he claims, he is (based on an assumption that only

the real user knows the password). However, such approach

is not free from drawbacks. For example, there has to be

some kind of a mechanism to handle a situation in which

the user forgets his or her password. Moreover, traditional

passwords can be broken with brute force method if only

attacking person has enough time and computation power

(and, of course, there are no other protections against it).

Also, if the user stores the password somewhere else than

in his or her own brain it has to be somehow secured as

well. Alternative to this method is using a biometrics-based

security.

Keystroke dynamics is a field within behavioral biometrics,

which concerns humans typing patterns on a keyboard. It

turns out that the way a user writes on a keyboard is one

of his or her unique characteristics. Back in 1980s, the

first work was done in order to develop an algorithm which

could identify a user based on this trait [1]. Many experi-

ments were performed which have shown it is a good indi-

cator of identity [1]–[4].

In order to describe mathematically a typing pattern we

first need to acquire specific data from the user. This data

consists of a timestamp of the moment of pressing and/or

leaving the button. Next, different measurements out of

this can be computed, e.g. [5]:

• dwell time – time between moment of pressing and

moment of leaving the button,

• flight time – time between pressing (or leaving) sub-

sequent keys.

A user who types the text can make mistakes, which means

that vectors representing different samples may differ in

length.

In the next step, data is passed to some kind of a model,

which task is to answer the question whether examined user

is the one who he claims to be. This model may be anomaly

detection system or classifier. Popular approach is to use

algorithms based on database of samples. In this case, new

sample is compared with those already in database in order

to find similarity.

The algorithm consists of two parts: way of acquiring data

along with features extraction and a model, which veri-

fies/identifies the sample. Designing new solutions may

affect both of these modules.

The accuracy may be influenced even by a way of acquir-

ing data from a user as well as it nature. In the most ba-

sic approach, sample describing the user simply consists

of timestamps mentioned earlier (from which dwell/flight

time is computed). Besides this, it is sometimes useful

to measure other values, e.g. eye motion. Humans often

either follow their fingers with their eyes or look straight

at the monitor. Taking this behavior into consideration

may enhance classification accuracy. Mobile devices are

supplied with additional sensors like gyroscope or ac-

celerometer. Information from these sensors was proven

useful [6]–[8]. [9] shows thoughts about authorization

specific for mobile devices with focus on using biometrics

techniques including keystroke dynamics. In addition to all

these information, there is also meaningful signal in errors

made by the user along with the way they correct them

(e.g. by using delete vs. backspace).

For some applications, using only keystroke dynamics may

not be accurate enough because of strict regulations. Even

80



Application of Recurrent Neural Networks for User Verification based on Keystroke Dynamics

in such situation, it can be used as a valuable support for tra-

ditional data. Such approaches increase security and com-

bined accuracy may be high enough to be used even in

healthcare [10]. Such methods may be extended by even

more biometrics techniques, e.g. face recognition [11].

As it was stated before, keystroke dynamics data may also

find applications when it comes to user identification. In

this paper this problem is reduced to of multiclass classifi-

cation, i.e. each user is represented by a class. In this case,

we usually have limited user count. This work focuses on

verification because in a problem it tries to solve the user

is already identified by his or her email address. Identifi-

cation problem was broadly described in [12] along with

proposed algorithm.

1.1. State of the Art Algorithms

Looking at the problem as an anomaly detection problem,

statistical methods based on some kind of distance are often

used. In standard approach, having some data set (let us

treat every sample as a vector) we find its center, which is

also a vector. This is a training phase. In testing phase on

the other hand, the task is to tell that whether given vector

(test sample) is an anomaly or not. In order to answer this

question distance between center and test sample has to be

computed. The distance may be classic Euclidean distance

as well as something more sophisticated i.e. Manhattan dis-

tance. This simple algorithm can be further modified e.g.

by applying distance norming. In Filtered Manhattan al-

gorithm, after finding the center at first all samples, which

are too far from it, are removed and then new center point

is computed. Similar group of algorithms are those based

on k-nearest neighbors idea. In this case, instead of des-

ignating a center point and comparing input with it, we

find k (in particular, k = 1) closest, in terms of defined dis-

tance, samples. In this case, usually an anomaly score as

distance from their center is computed. Another interest-

ing approach is using fuzzy sets. In such sets each object

belongs (to some degree) to ranges. The anomaly score is

then computed as an average lack of belonging. The ap-

proach, which is most similar to the idea presented in this

work, is probably one-class SVM. However, such a classi-

fier is trained only on positive class (in opposition to this

work’s algorithm).

More thorough description of those algorithms (with ref-

erences to exhaustive descriptions) can be found in [13].

Results of [13] are benchmark for results achieved by the

algorithm described in this paper.

When it comes to multiclass classification with keystroke

dynamics, the multiple classifiers were tested: HMM,

SVM, k-nearest neighbors, and neural networks [14]. Pre-

sented algorithm does not solve multiclass classification

problem. Nevertheless, with slight modification it could

be trained for such problems as well. On the other hand,

algorithms mentioned in this paragraph could be used as

binary classifiers and replace the proposed one.

1.2. Algorithm Evaluation Methods

An important thing to consider is the evaluation of proposed

algorithms. Let us introduce the following terms:

• True Positive Rate (TPR) or hit-rate T P
T P+FN

,

• False Positive Rate (FPR) FP
FP+TN

, informs about the

probability of accepting an impostor,

where: T P – number of true positives, T N – number of true

negatives, FP – number of false positives, FN – number

of false negatives.

Besides standard accuracy or error measure, when it comes

to keystroke dynamics (and also in other fields of biomet-

rics) two more measures are often used to evaluate algo-

rithms:

• Equal Error Rate (EER) – value for a threshold in

which FPR and miss rate1 – TPR are equal,

• Zero-miss rate – FPR value for which TPR = 1 (no

false positive errors).

Both these values can be easily read from ROC curve.

Figure 1 shows sample ROC curve along with mentioned

points marked on it. The values can be read from x axis of

these points.
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Fig. 1. Sample ROC curve (from the results of this research)

with EER and zero-miss points marked.

1.3. Problems with Algorithms and Authors’ Proposition

Some of the mentioned algorithms are based on assump-

tion that we have some database of patterns for a user. In

the moment when a new sample appears, we need to go

through the whole database and find similarities (k-nearest

neighbors is an example of this approach). Note that the

keystroke dynamics is a behavioral feature, thus it changes

with time more than physiological traits. When it comes to

keystroke dynamics problem, maintaining a static database

for a given user may end up with gradually decreasing accu-

racy. One of the solution, which comes to mind, is adding

new samples. Unfortunately, the side effect of this approach
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is the growing need of memory of such a system. This dis-

advantage, combined with a big number of users may result

in memory consumption as the main drawback. When it

comes to multiclass classification, there is a need to add

new class with each new user.

Another problem of these algorithms is the fact, that they

treat input as a vector. Intuitively it seems that numbers

representing the sample from a human are more like a se-

quence, i.e. there is some relation between them. As usual

in machine learning problems – it is hidden and unknown.

Because mentioned algorithms do not treat data as a se-

quence, some information natural to them must be encoded

artificially. As an example, let us say that the user has mis-

taken and then corrected the errors. In case of sequence,

such information is directly encoded in its length, because

errors and corrections require more keystrokes.

Algorithms, which are described and compared in [13],

reach relatively low accuracy when it comes to the situation

where the threshold was set to avoid false positive errors

(zero-miss). The best presented algorithm in this setting

(k-nearest neighbors with Mahalanobis distance) achieved

0.468 zero-miss rate. In a problem of access control, this

would mean the situation in which probability of rejecting

a genuine user is close to 0.5.

A problem for which the presented algorithm could be use-

ful is creating a centralized system serving authentication

based on a way the user types his or her email address.

Thus, the email along with the biological characteristic of

a human being would be the only ID in the Internet and ne-

cessity of using multiple long passwords would disappear.

Services of such a system could be used by external ser-

vices which could supply it with sufficient information, i.e.

keystroke dynamics data plus email address and in return

get the information whether the user is verified or not.

Having all this in mind, the presented algorithm is a subject

of more constraints. First, it should authenticate potentially

everyone in the Internet. Given the enormous number of

Internet users (almost 3 billion in 2014 [15]), infinite scal-

ability in terms of user count have to be assumed, which

cannot be constrained by the algorithm.

Such a system could potentially be used to grant the access

to many services using the same one identification way.

The most important feature of such a system is definitely

securing resources from unauthorized people. Ignoring this

problem would result not only in not solving the problem

in which a user has one password to many accounts and

someone has accessed it, but could even make it worse. It

seems better to reject a genuine user from time to time than

to accept the attacking one. The designed algorithm should

thus focus on minimizing (ideally eliminating) false positive

errors, which means accepting wrong user. Eliminating

such errors should be a goal even at the cost of big drop in

accuracy.

The proposed algorithm was designed with all that features

in mind. Thus, the most important goals are scalability in

terms of user count and high accuracy without false positive

errors.

2. The Algorithm

2.1. General Idea and Motivation

The standard approach in a keystroke dynamics based ver-

ification is using anomaly detectors. Presented approach is

different. It uses a binary classifier (recurrent neural net-

works). Data from the genuine user are positive and from

the other people – negative. A big disadvantage, which may

appear in readers mind, is the requirement of negative data

for training phase. Some thoughts about it along with ways

of mitigating this issue were described in latter sections.

In order to choose good classifier it is worth to consider the

nature of a problem. First property of the examined data is

they do not seem to be a vector describing some physical

phenomenon or object (like images, where every element

of a vector contains information about specific pixel). As

it was stated before, it is assumed that data has a sequence

nature. It is worth noting though, that there are no strict

proofs of that. However, for some people it seems intuitive,

because of (among other reasons) keyboard arrangement.

This assumption has influenced the choice of a classifier.

2.2. Recurrent Neural Networks

Due to assumed sequence nature of input data authors have

decided to use recurrent neural networks. These networks

naturally operate on sequences. Plain recurrent neural net-

works are very simple (compared to other neural network

architectures) models. They differ from feed forward net-

works in the way of processing input – here it is processed

in a step-by-step manner. At step t the network receives xt

as input and having knowledge about state from last step

ht−1 it computes its output according to the formulas (1)

and (2). Whh, Wxh and Why are matrices of network param-

eters.

ht = tanh(Whh ·ht−1 +Wxh · xt) (1)

y = Why ·ht (2)

Unfortunately, in its simplest form, recurrent neural net-

works are very hard to train due to the problem known

as exploding or vanishing gradient [16], [17]. However,

there are modified architectures of recurrent neural net-

works, which solve this problem.

2.3. LSTM

Long Short-Term Memory (LSTM) networks along with

training algorithm were proposed in 1997 in the paper [16]

in order to solve mentioned problem of vanishing gradient.

They are successfully used in many fields, especially when

data is sequential, e.g. natural language processing, speech

recognition, machine translation, image captioning [18] or

even bioinformatics [19].

Core idea behind LSTM network is inclusion of a so-called

cell state. It is a vector, which simply stores information,

thus it is a kind of memory. This vector is passed through

computation steps – modified or not. At each step the net-

work can write or remove some information to/from the
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Fig. 2. LSTM computation in time.

memory. It is done using so-called gates. At each compu-

tation step the input and the cell state from previous step

first go to the forget gate. The way it operates is very

simple – it is a plain sigmoidal layer known from neural

networks. To be more precise, its output is computed with

formula:

ft = σ(Wf · [ht−1,xt ]+ b f ) (3)

where:

• σ – sigmoid function
(

σ(x) = 1

1+e−x

)

,

• Wf ,b f - weight matrix and bias of forget gate,

• ht−1 - output from previous step,

• xt - input in current step.

The vector resulting from this gate tells how much infor-

mation should be forgotten and how much should be re-

membered. Degree of this “forgetting” is controlled by the

value of sigmoid function which is in range [0,1]: 0 means

forget everything, 1 means remember everything.

Next is the input gate. Input data along with the output

from the previous step are used twice in this gate: in the

sigmoid layer (similar to forget gate) and in another layer

with hyperbolic tangent as activation. Results of these lay-

ers are going to be used in order to create a vector, which

is then added to the cell state. This step is described by

formulas:

it = σ(Wi · [ht−1,xt ]+ bi) , (4)

C̃t = tanh(WC · [ht−1,xt ]+ bC) . (5)

After computing these 3 values they can be used to update

the cell state. This computation is shown by equation:

Ct = ft ·Ct−1 + it ·C̃t , (6)

where: Ct is the cell state at the moment t. ft is computed

from Eq. (3), it from Eq. (4), C̃t from Eq. (5). Current

memory value is first multiplied by an output from forget

gate which potentially erases some information and then

new information is added. The final LSTM result from

the current step is computed not only from the input and

the state but also from the cell state. This is described by

following formulas:

ot = σ(Wo · [ht−1,xt ]+ bo) , (7)

ht = ot · tanh(Ct) . (8)

Final result of this computation is some real value from

range [0,1] if the network is last layer of the model. If it

is inner layer then it returns the whole sequence containing

all values of h computed in “for” loop. If network is the

last layer then its output is compared with the threshold,

which determines the final class.

Figure 2 shows how the mentioned computations are per-

formed in time [20].

2.4. GRU

Gated Recurrent Units (GRUs) were introduced in 2014

[21]. They are a similar to LSTM. What is different is that

instead of two gates – forget and input gate, GRUs have only

one – update gate. Another difference and simplification

lies in fact, that GRUs do not have separate memory (cell

state). The memory is associated with the state from previ-

ous step. Network computation is described by formulas:

zt = σ(Wz · [ht−1,xt ]) , (9)

rt = σ(Wr · [ht−1,xt ]) , (10)

h̃t = tanh(W · [rt ·ht−1,xt ]) , (11)

ht = (1− zt) ·ht−1 + zt · h̃t . (12)

Merged gates output is zt vector. It is used for both forget-

ting and remembering.

As in LSTM, output is a real number from range [0,1]
if network is last layer of a model. Otherwise, it returns

sequence consisting of every h values computed in “for”

loop. The final model output is then compared with the

threshold in order to determine the class.

Figure 3 presents diagram with GRU cell [20].
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Fig. 3. GRU diagram.

2.5. Training

LSTM and GRU were trained by standard Back Propaga-

tion Through Time (BPTT) algorithm [22]. It is used to

compute cost function derivative required for optimization

algorithm, i.e. Adam optimizer in this case [23]. Networks

were trained for 100 epochs, and cost is described by func-

tion:

C = −

1

n
∑
x

[

y lna +(1− y) ln(1−a)
]

, (13)

where: n – samples count, x – single element, y – expected

label for x, a – actual label for x.

Figure 4 shows an example loss over iterations graph.
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Fig. 4. An example graph showing loss value over iterations.

2.6. Small Training Set and Lack of Negative Data

As it was mentioned earlier, serious drawback of the pre-

sented algorithm is a need for negative data during the

training phase. In real life applications, requiring user to

type his address several times is already an inconvenience

for him. Forcing other people to type, this address would

be even harder. One of possible solutions could be using

neural network as one-class classifier. In such a case, the

model would be trained only on positive data, which is

easier to acquire. Such methods are successfully applied

for SVM classifiers [13] to solve verification problem. Un-

fortunately, the conducted experiments had not shown any

good results with recurrent neural networks.

Another approach, which was tested, is generation of ar-

tificial negative data. From every positive sample authors

got a negative by adding a random (with normal distri-

bution, several values of standard deviation were tested)

noise to it. The classifier was trained on positive and ar-

tificially created negative data and then evaluated only on

real data.

Another problem is the size of a training set. Deep neural

networks are models in which there are enormous number

of parameters, which has to be adjusted during the train-

ing, thus they require big amount of data. Training for

much iteration with small dataset tends to overfit. Unfor-

tunately, in this case asking the user to type an address

several hundred times would clearly be impractical. In this

work, authors’ dataset has only over a dozen samples for

each user. Because of that, the authors had to apply regu-

larization techniques in order to avoid overfitting.

It is worth mention that the challenges may not be a prob-

lem in some real applications. Large email services, e.g.

Google Gmail, have (or might have) access to a large

amount of data about address typing. Positive data could

come from successful login or typing own email. Negative

data on the other hand could be extracted from other people

who type email of a given user in order to send him a mes-

sage. In such a case, there would be no need to generate

artificial data.

2.7. False Positive Errors Minimalization

As it was mentioned earlier, one of the challenges for the

designed algorithm is the minimalization of false positive

errors.

A standard approach is to select the acceptance thresholds.

By increasing its value, number of samples classified as

positive should decrease. Hopefully, first to drop will be

samples classified as positive with low likelihood, which

are potentially false positive errors. The idea to eliminate

such errors is then to increase the threshold until every false

positive error is gone on training set.

Unfortunately, networks tend to classify with a very high

likelihood. Thus selecting the threshold, which eliminates

unwanted errors will definitely decrease total accuracy, be-

cause it has to be pretty high, so many genuine samples are

rejected.

The question arouses – why LSTM and GRU models tend

to return high numbers even if they mistake? These models

are very sophisticated and are based on strong type of neural

networks (so-called deep neural networks) and are used

for high dimensional problems like image recognition [24].

Compared to such problems, the presented task has much

smaller dimensionality, which is probably a reason why

network overfits.

There are different methods of regularization, which help

to mitigate the problem of overfitting [25]. One of them,

used in this work is dropout.
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2.8. Dropout

Dropout was introduced by researchers from University of

Toronto [26] as a regularization technique for deep neural

networks. The idea behind it is to remove some random

group of neurons along with connections during training

phases. Since those random groups are different at each

step, it prevents neurons from learning to copy other neu-

rons, which in turn makes them better at approximating

desired output. This is often compared to ensemble mod-

els, which is training several models and making them vote.

Dropout is fully described in [26].

2.9. Tested Architectures

Several neural network architecture were trained and tested

as classifiers. Architecture which was satisfying on cho-

sen test, dataset turned out to be too weak for benchmark

dataset (see results in Section 4) so it had to be adjusted.

The tested architectures are shown in Figs. 5–8, where:

• LSTM – single LSTM cell,

• GRU – single GRU cell,

• Dropout – adding regularization using dropout,

• LR – sigmoid layer,

• Embedding – mapping value to vector space.

Embedding (128)

LSTM (128)
+

Dropout (0.5)

LR (1)

Fig. 5. Network embedding and one LSTM layer.

LSTM (100)
+

Dropout (0.5)

LSTM (250)
+

Dropout (0.5)

LR (1)

Fig. 6. Network structure with two LSTM layers.

Moreover, networks in Figs. 5 and 6 were trained with and

without dropout, which turned out to have major influence

on results. Process of architecture selection was empirical,

which means that many architectures have been tested and

hyperparameters based on results were adjusted.

LSTM (240)
+

Dropout (0.5)

LSTM (240)
+

Dropout (0.5)

LSTM (240)
+

Dropout (0.5)

LR (1)

Fig. 7. Network with three LSTM layers (it was tested only on

benchmark set).

GRU (240)
+

Dropout (0.5)

GRU (240)
+

Dropout (0.5)

GRU (240)
+

Dropout (0.5)

LR (1)

Fig. 8. Network with three GRU layers (it was tested only on

benchmark set).

3. Datasets

3.1. Authors’ Dataset

In order to conduct experiments we prepared own dataset.

To achieve this task a website gathering keystroke data was

used. The recording software was implemented as a student

project by Albert Wolant. Every user was asked to type

his address 5 times and type other addresses once. Nine

students have taken part in this experiments, but due to

low quality of some data (e.g. copy-paste method), samples

batch from 3 people was rejected. Final dataset consisted

of data from 6 people ranging from 12 to 20 samples each.

It is worth mentioning that samples include information

about mistakes made by typists.

3.2. Benchmark Dataset

Because the dataset described in previous section has only

few samples, in addition a benchmark dataset available on

the website was used [27]. This site provides exhaustive

description of this set and acquiring method. This dataset

was used by its authors to compare anomaly detectors [13].

It consists of data gathered from 51 typists, each has typed

the same phrase 400 times. Even though it was created
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for anomaly detectors, it turned out to be very valuable for

presented algorithm. Because users typed the same phrase

(to be more precise – same password), it is possible to cre-

ate a dataset for each user containing this user’s samples as

positive data and all other samples as negative. The prob-

lem here is that in such case there are 50 times as many

negative as positive data. Classifier trained on such data

will most likely tend to classify new samples as negative.

It would also give false impression of high accuracy [28].

Because only small part of test data would be positive, so

just classifying everything as negative gives high accuracy.

With this problem in mind, authors decided to balance pos-

itive and negative data. For every user, only 400 random

samples from other users were chosen as negative. Eventu-

ally, 51 sets were obtained (one for every user) containing

800 samples each: 400 hundred positive, 400 negative.

One drawback of this set is that it is cleared from mistak-

enly typed samples. Thus, there is no information about

frequency of errors done by a user.

It should be clearly stated, that since this set was not used in

its direct shape and that evaluation methods were different

from those used by its authors results of this research cannot

be directly compared to original results achieved by authors

in [13].

4. Experiments and Results

For both (own and benchmark) datasets the different but not

disjoint sets of models have been tested. In addition, a sce-

nario in which negative data is artificial was also included

in test process. In this case was tested and compared with

k-nearest neighbors’ classifier.

In order to achieve repeatability of experiments, they were

all performed with the same random number generator

seed.

4.1. Authors’ Dataset

Due to small size of this set, a non-standard evaluation has

been employed (by “standard” we mean dividing set for

training, validation and test sets). This is why leave-n-out-

cross-validation with n = 1 [29] is used. In this validation

with (n = 1) the one model for every dataset element was

trained. This selected element acts as one element test set.

The model is trained on the rest of the set. This means,

having n elements in a set, n models should be trained.

Then the model computation on this selected element is

performed. The total accuracy is an average computed from

all those results.

4.1.1. Model with one LSTM Cell and Embedding

For this model, the total accuracy for all users reached

only 58%. Table 1 shows results for all users. Note that

because of validation type, single sample is included

multiple times here. FP-free thresholds cell shows score

when acceptance thresholds were chosen to eliminate false

positive errors on training set. Because total accuracy was

low, we got rid of embedding layer in favor of another

LSTM cells.

Table 1

Results for all users

Accepted Rejected

Genuine user 359 138

Impostor 164 72

Threshold 0.5 FP-free thresholds

Accuracy 0.58 0.55

Table 2

Results for all users

Accepted Rejected

Genuine user 456 41

Impostor 75 161

Threshold 0.5 FP-free threshold

Accuracy 0.85 (0.88) 0.52 (0.8)

4.1.2. Model with two LSTM Cells

This model was tested in two versions – with and with-

out dropout. Table 2 shows its accuracy. The numbers in

parentheses relate to models with dropout.

The accuracy of LSTM model with 2 cells is satisfying.

The dropout’s influence on results is clear, especially if false

positive free thresholds are used. By only adding dropout,

the accuracy raised from 0.52 to 0.8. Unfortunately, the

size of this dataset is small and the evaluation method had

negative impact on results. Hence, it is hard to judge the

algorithm quality by this data only. Despite this problem,

those results hold some value, because in real life applica-

tions of verification based on keystroke dynamics usually

only have small datasets are available.

4.2. Benchmark Set – Limited Data

Benchmark dataset, as it was described earlier, contains

more data (in terms of both user count and samples per

user). It is thus more reliable when it comes to the al-

gorithm evaluation. Samples in this dataset contain more

than just dwell-time. However, because only dwell-time

was recorded in author’s dataset, first study was performed

only including this measure.

4.2.1. Model with two LSTM Cells

This is the same model, which turned out to be good

enough for our custom dataset. This time, only version

with dropout was tested as it achieved better results. Re-

sults are presented in Tables 3 and 4.

Unfortunately, model with two LSTM cells, even though it

performed well on small dataset, does not give satisfying
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Table 3

Results on benchmark dataset for two LSTM cells

Threshold 0.5 FP-free

Average accuracy 0.759 0.59

Maximum 0.975 0.994

Minimum 0.4875 0.5

Standard deviation 0.101 0.1344

Table 4

Results on benchmark dataset for two LSTM cells

EER 0.227 (0.094)

Zero-miss rate 0.764 (0.221)

results on benchmark dataset. We have then made it more

complex by adding one more LSTM cell as well as increas-

ing the total number of neurons. This model has achieved

results presented in Tables 5 and 6.

Table 5

Accuracy on benchmark dataset for model

with three LSTM cells

Threshold 0.5 FP-free

Average accuracy 0.764 0.61

Maximum 0.9875 0.9875

Minimum 0.5187 0.5

Standard deviation 0.114 0.1399

Table 6

Benchmark dataset results for three model

with three LSTM layers

EER 0.219 (0.106)

Zero-miss rate 0.747 (0.221)

4.2.2. Model with Three LSTM Cells

In this case results are only slightly better than previous.

It seems like simply increasing complexity of this model is

not enough. Therefore, we decided to try again, swapping

LSTM cells with GRU equivalents.

4.2.3. Model with Three GRU Cells

Results of experiments with this model (Tables 7 and 8) are

comparable with those achieved on own dataset. However,

if we compare it with results achieved by author’s dataset,

proposed algorithm would be placed 8th in terms of EER

and 6th when it comes to zero-miss rate. Especially zero-

miss rate is high which we would like to minimize.

4.3. Benchmark Dataset – All Data

As it was mentioned earlier, original dataset contains more

than just dwell-time. Authors decided to try testing pro-

Table 7

Accuracy on the benchmark dataset for model

with three GRU cells

Threshold 0.5 FP-free

Average accuracy 0.83 0.68

Maximum 0.9875 0.9875

Minimum 0.5 0.5

Standard deviation 0.099 0.1397

Table 8

Benchmark dataset results for three model

with three GRU layers

EER 0.150 (0.087)

Zero-miss rate 0.613 (0.260)

posed algorithm using all data provided by the dataset.

Achieved results are presented in Table 9. Only measures,

which are easily comparable with algorithms presented

in [13] are shown.

Table 9

Models results on benchmark dataset with all data

Model EER Zero-miss rate

LSTM 2 cells 0.136 (0.176) 0.379 (0.314)

LSTM 3 cells 0.165 (0.191) 0.333 (0.282)

GRU 3 cells 0.224 (0.319) 0.389 (0.325)

The results are significantly better than those which only

included dwell time. In addition, the best model here is the

one built with 3 LSTM cells.

4.4. Artificially Generated Data

One of the most important disadvantages of the algorithm

is the need of negative data during training. In this work

the method of artificial generation of negative data based

on positive samples have been tested. Proposed algorithm

was to k-nearest neighbor classifier. In total 417 different

combinations of distance definition, number of neighbors

and standard deviation of the normal distribution used for

negative data generation was tested. It is worth noting that

the algorithm is used as a classifier and not as an anomaly

detector. The algorithm presented in this work has achieved

results shown in Tables 10 and 11.

Table 10

Accuracy for data with artificial negative samples

Model
Accuracy Accuracy

threshold 0.5 FP-free

LSTM 2 cells 0.622 (0.094) 0.562 (0.094)

LSTM 3 cells 0.633 (0.106) 0.561 (0.100)

GRU 3 cells 0.629 (0.093) 0.707 (0.101)
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Table 11

EER and zero-miss rate for data with artificial

negative samples

Model EER Zero-miss rate

LSTM 2 cells 0.441 (0.336) 0.598 (0.303)

LSTM 3 cells 0.768 (0.219) 0.592 (0.291)

GRU 3 cells 0.527 (0.402) 0.597 (0.334)

For a comparison, best result of k-nearest neighbor was for

k = 1 and dice distance and it was 58%.

A similar experiment was also conducted on author’s

dataset. In this case, the best k-nearest neighbor algorithm

accuracy was 87% while neural networks achieved 100%

accuracy. However, this cannot be used as an argument

for high accuracy of the model, because experiments on

the larger dataset have not confirmed such high accuracy.

The question is, however, why artificial data has actually

increased accuracy (using only real data 80% accuracy

was achieved). The reason is probably that without arti-

ficial data, the dataset was imbalanced in terms of nega-

tive to positive samples ratio, which made the network to

be more eager to answer with class, which was overrep-

resented in the training set. Since we generated one arti-

ficial sample for each positive, this gave us the perfectly

balanced set.

Unfortunately, presented method of generating artificial

data turned out to be not very effective. The accuracy

is significantly lower compared to training with only real

(positive and negative) data. However, as was expected,

recurrent neural networks performed generally better than

k-nearest neighbor classifier.

5. Conclusions and Algorithm

Evaluation

Compared to results from authors of the benchmark dataset,

achieved best result (EER 0.136) would be on 7th place in

terms of EER for total 14 places. It is equal to the one

achieved by filtered Manhattan algorithm, yet its standard

deviation is better: 0.083 compared to 0.176. The pre-

sented algorithm performed better than other neural net-

works tested by authors.

However, zero-miss rate is more interesting. The best re-

sult achieved by authors of [13] is 0.468. In this research

the best result is 0.333, a lot better, however, those results

cannot be directly compared, because of different nature

of algorithms – this work shows binary classifier, authors

of the mentioned paper tested anomaly detectors, different

training method and different evaluation method. Despite

that, presented algorithm performed well in terms of zero-

miss rate and lets us recommended it as valuable when it

comes to such a case. It is worth reminding, that high ac-

curacy without false positive errors was one of the main

objectives of the designed algorithm. It is worth noting,

that the big leap in accuracy was caused by including ad-

ditional data (both flight and dwell time). As it turned out,

this had more influence than classifier architecture.

Another important feature, which was required from the

algorithm, was scalability in terms of user count. Because

for each user we train separate classifier, there is no prob-

lem with too many similar classes – each model is bi-

nary classifier trained for a given individual. Because neu-

ral networks are based on parametric models, they require

the access to samples database only in the training phase.

Thus, the increasing sample count for the user will not in-

crease the size of the model when it comes to memory

usage. Each model requires about 3.5 MB. This seems rea-

sonable size (1 million users would require 3.5 TB of disk

space). Therefore, the objective of unconstrained scalabil-

ity is achieved.

We have stated the hypothesis that input data are sequences,

and not just vectors and that a valuable signal comes from

this information. Because recurrent neural networks are

the natural choice for sequences processing, it could have

direct impact on the accuracy. However, we cannot say with

strong belief that this statement is more than just hypothesis.

If our results were significantly better then others, it would

be the strong evidence for it.

Unfortunately, the algorithm is not free from flaws. Most

of them, however, were known at the beginning of the work.

We have tried to mitigate the problem by generating ar-

tificial negative data. Results were admittedly better than

k-nearest neighbors, yet they are noticeably worse than

those achieved by the same model with access to real neg-

ative data. Perhaps, there is a method of generating better

data, but further studies are needed here.

Certain drawback of the algorithm is how much time it re-

quires to be fully trained. Neural networks are complicated

models with a large number of parameters, so it requires

time to adjust them. On a typical desktop 2.9 GHz In-

tel Core i5 CPU training and evaluating most sophisticated

models took about 8 hours, which means about 10 min-

utes per user (there were 51 typists in benchmark dataset).

Even if this seems quick, it is very long time compared

to many anomaly detectors, which often only require one

pass through the database. 10 minutes is a big issue for

so-called continuous verification, i.e. constant monitoring

of keyboard usage in order to detect impostors. However,

training time directly depends on the dataset size. In this

case, for each user we had 640 samples. Acquiring this

number of samples (with assumption that exactly half of

them are negative) requires time and has to be finished be-

fore training. Having said that, 10 minutes becomes less

significant. Nevertheless, full training and evaluation re-

quires 8 hours, which makes the hyperparameters adjust-

ment a tougher task.

Paper [30] presents LSTM networks used as anomaly de-

tectors. By incorporating this idea, we could use the same

evaluation method as it was used in [13], which introduced

benchmark dataset. This would allow us direct compari-

son. Moreover, it would solve the problem of negative data
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requirement. Results achieved in the mentioned work give

hope for increase of usability if those models for keystroke

dynamics in the future.
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